Trimble R8s GNSS System

Key Features

One **configurable** receiver that is **scalable** for future needs

Available in **post-processing**, **base only**, **rover only**, **or base** & **rover configurations**

Advanced satellite tracking with **Trimble 360** receiver technology

Includes **Trimble Maxwell 6 chips** with 440 channels

Simple integration with Trimble S-Series Total Stations and the V10 Imaging Rover

Intuitive Trimble Access Field Software and Trimble Business Center Office Software

ONE RECEIVER CONFIGURED FOR TODAY SCALABLE FOR TOMORROW

For more than 30 years, Trimble has been setting the standard in positioning technology and we continue to raise the bar. Rather than a pre-configured system, the Trimble® R8s gives you just the features and benefits you need, in one flexible, scalable system. It's never been easier to build a system tailored to your job.

The Trimble R8s easily integrates with Trimble S-Series Total Stations and the innovative Trimble V10 Imaging Rover. Create a complete solution by combining the Trimble R8s receiver with a Trimble controller running Trimble Access™ field software, and Trimble Business Center office software.

Configure and Scale With Ease

With the Trimble R8s, it's easy and simple to build a receiver that is right for the job. Choose the configuration level that suits your needs best, whether it's post-processing, base, rover, or a combination of base and rover functionality. After you've selected a configuration level, additional individual options can be added to further extend the receiver functionality.

The Trimble R8s offers the ultimate in scalability. As your requirements change, the Trimble R8s can adapt. Simply add functionality whenever you need it.

Trimble 360 Technology

Each Trimble R8s comes integrated with powerful Trimble 360 tracking technology that supports signals from all existing and planned constellations, and augmentation systems. Trimble 360 technology can expand the reach of your GNSS rover to sites that were previously inaccessible due to moderate vegetation or other obstructions by taking advantage of the availability of additional satellite signals.

The Trimble R8s includes two integrated Maxwell™ 6 chips and 440 GNSS channels. Capable of tracking a full range of satellite systems, including GPS, GLONASS, Galileo, BeiDou and QZSS. Together with the proprietary CMRx communications protocol that provides unprecedented correction compression, you get the most reliable positioning performance in an investment that will stay productive well into the future.

Communication Options and Remote Access Via Web Ui

The Trimble R8s GNSS receiver provides data communication options including an integrated wide-band UHF radio or 3G cellular modem.

Trimble's exclusive Web UI eliminates the need to travel for routine monitoring of base station receivers. Simply assess the health and status of base receivers and perform remote configurations from the office. You can even download GNSS raw data for post-processing purposes through Web UI and save additional trips to the field.

The Complete Solution

Create an industry-leading field solution by pairing the Trimble R8s GNSS receiver with a powerful Trimble controller loaded with our easy-to-use Trimble Access field software.

Trimble Access field software offers the features and capabilities to simplify everyday work. Our streamlined workflow modules such as Roads, Monitoring, Mines, and Tunnels guide crews through common project types, enabling them to get the job done faster. Survey companies can also implement their unique workflows by taking advantage of the customization capabilities available in the Trimble Access Software Development Kit (SDK).

Once you're back in the office, Trimble Business Center enables you to check, process and adjust your data with confidence. No matter what Trimble solution you use in the field, you can trust that Trimble Business Center office software will help you generate industry leading deliverables.

Trimble Mobile App—A New Way to Quickly Collect GNSS Raw Data

The Trimble DL Android app provides a simple and easy to use mobile interface for collecting static GNSS raw data for post-processing purposes without the need of using a Trimble controller or Trimble Access field software. This free of charge app is available through the Google Play Store and operates on Android smart phones and tablets.

Trimble R8s GNSS System

PERFORMANCE SPECIFICATIONS¹

Measurements

- Advanced Trimble Maxwell 6 Custom Survey GNSS chips with 440 channels
- Future-proof your investment with Trimble 360 tracking
- High precision multiple correlator for GNSS pseudorange measurements
- Unfiltered, un-smoothed pseudorange measurements data for low noise, low multipath error, low time domain correlation and high dynamic response
- Very low noise GNSS carrier phase measurements with <1 mm precision in a 1 Hz bandwidth
- Signal-to-Noise ratios reported in dB-Hz
- Proven Trimble low elevation tracking technology
- Satellite signals tracked simultaneously:
 - GPS: L1C/A, L1C, L2C, L2E, L5
 - GLONASS: L1C/A, L1P, L2C/A, L2P, L3
 - SBAS: L1C/A, L5 (for SBAS satellites that support L5)
 - Galileo: E1, E5A, E5B
 - BeiDou (COMPASS): B1, B2
- SBAS: QZSS, WAAS, EGNOS, GAGAN
- Positioning rates: 1 Hz, 2 Hz, 5 Hz, 10 Hz, and 20 Hz

POSITIONING PERFORMANCE²

		positio	

Horizontal	om RMS
Vertical	om RMS
SBAS differential positioning accuracy ³ typically <5 m	3DRMS

Static GNSS surveying

n-Precisio	

Horizontal	3 mm + 0.1 ppm RMS	
Vertical	3.5 mm + 0.4 ppm RMS	
Static and Fast Static		
Horizontal	3 mm + 0.5 ppm RMS	

Postprocessed Kinematic (PPK) GNSS surveying

Horizontal	 8	mm + 1 ppm RMS
Vertical	 15	mm + 1 ppm RMS

Real Time Kinematic surveying

Single Baseline <30 km	
Horizontal	 ım + 1 ppm RMS
Vertical	 m + 1 ppm RMS

ľ	Network RTK ⁴
	Horizontal 8 mm + 0.5 ppm RMS
	Vertical
	Initialization time ⁵ typically <8 seconds
	Initialization reliability 5

- Based on Trimble R8s GNSS receiver configuration
 Precision and reliability may be subject to anomalies due to multipath, obstructions, satellite geometry, and
 atmospheric conditions. The specifications stated recommend the use of stable mounts in an open sky view, EMI and
 multipath clean environment, optimal GNSS constellation configurations, along with the use of survey practices that
 are generally accepted for performing the highest-order surveys for the applicable application including occupation
 time appropriate for baseline length. Baselines longer than 30 km require precise ephemeris and occupations up to
 24 hours may be required to achieve the high precision static specification.
 Depends on SBAS system performance.
 Network RTK PPM values are referenced to the closest physical reference station.

- May be affected by atmospheric conditions, signal multipath, obstructions and satellite geometry. Initialization reliability is continuously monitored to ensure highest quality.

 Receiver will operate normally to -40° C, internal batteries are rated to -20° C, optional internal cellular modem contents to 40° C.
- operates to 40° C.

 Tracking GPS, GLONASS and SBAS satellites.

 Varies with temperature and wireless data rate. When using a receiver and internal radio in the transmit mode, it is recommended that an external 6 Ah or higher battery is used. The specified operating times on an internal battery for the cellular receive option are in GSM CSD (Circuit-Switched Data) or GPRS PSD (Packet-Switched Data) mode.
- 9 Varies with terrain and operating conditions10 Bluetooth type approvals are country specific

HARDWARE

Physical

3.81 kg (8.40 lb) items above plus range pole, controller & internal radio environmental standards:Non-operating: Designed to survive a 2 m (6.6 ft) pole Vibration......MIL-STD-810F, FIG.514.5C-1

- Power 11 V DC to 24 V DC external power input with over-voltage
- protection on Port 1 (7-pin Lemo)
 Rechargeable, removable 7.4 V, 2.8 Ah Lithium-ion smart battery
 Power consumption is <3.2 W in RTK rover mode with internal radio and Bluetooth® in use7
- Operating times on internal battery⁸:

COMMUNICATIONS AND DATA STORAGE

- Serial: 3-wire serial (7-pin Lemo) on Port 1; full RS-232 serial (Dsub 9 pin) on
- Radio Modem¹: fully Integrated, sealed 450 MHz wide band receiver/ transmitter with frequency range of 403 MHz to 473 MHz, support of Trimble, Pacific Crest, and SATEL radio protocols:

 - Transmit power: 0.5 W

 - Range: 3–5 km typical / 10 km optimal⁹

 Cellular¹: fully integrated, sealed internal GSM/GPRS/EDGE/UMTS/HSPA+
- modem option. CSD (Circuit-Switched Data) and PSD (Packet-Switched Data)

- supported Global Operation:

 Penta-Band UMTS/HSPA+ (850/800, 900, 1900, and 2100 MHz)

 Quad-Band GSM/CSD & GPRS/EDGE (850, 900, 1800, and 1900 MHz)

 Bluetooth: fully integrated, fully sealed 2.4 GHz communications port (Bluetooth)¹⁰
- External communication devices for corrections supported on Serial and Bluetooth ports
- Data storage: 56 MB internal memory, 960 hours of raw observables (approx. 1.4 MB/day), based on recording every 15 sec from an average of 14 satellites

- CMR+, CMRx, RTCM 2.1, RTCM 2.3, RTCM 3.0, RTCM 3.1 inputs and
- 23 NMEA outputs, GSOF, RT17 and RT27 outputs, supports BINEX and smoothed carrier

5 mm + 0.5 ppm RMS

- Offers simple configuration, operation, status, and data transfer
- Accessible via Serial and Bluetooth

Supported Trimble Controllers¹

Trimble TSC3, Trimble Slate, Trimble CU, Trimble Tablet Rugged PC

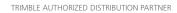
CERTIFICATIONS

FCC Part 15 (Class B device), Part 15.247 and Part 90; ICES-003, RSS-210 and RSS-119; CE Mark; C-Tick; Bluetooth EPL

Specifications subject to change without notice.

© 2015, Trimble Navigation Limited. All rights reserved. Trimble and the Globe & Triangle logo are trademarks of Trimble Navigation Limited, registered in the United States and in other countries. Access, Maxwell, WEB UI, and VRS are trademarks of Trimble Navigation Limited. The Bluetooth word mark and logos are owned by the Bluetooth SiG, Inc. and any use of such marks by Trimble Navigation Limited is under license. Android and Google Play are trademarks of Google Inc. All other trademarks are the property of vners. PN 022516-130 (04/15)

NORTH AMERICA


Trimble Navigation Limited 10368 Westmoor Dr Westminster CO 80021 USA

EUROPE

Trimble Germany GmbH Am Prime Parc 11 65479 Raunheim GERMANY

ASIA-PACIFIC

Trimble Navigation Singapore Pty Limited 80 Marine Parade Road #22-06. Parkway Parade Singapore 449269 SINGAPORE

